

Thank you so much for your download! I truly appreciate it. I hope you will put your heart and creativity into making this activity your own.

-ChRistine Cadalzo-

TERMS OF USE:

You MAY:

-Use this item in your own classroom for your own use. - copy parts of this item for use in your own classroom by your own students.
-Purchase 50% off licenses for others to use this product.

You MAY NOT:

-Give or email this item to others. - Copy this item for use by others. -Post this item on a website (even a personal, class, or district site.) -Put this item into a shared folder. - Copy or modify any part of this product to offer for free or sale.

ALL FILES ARE COPYRIGHTED and are subject to the protection of the DMCA laws.

Click the buttons for more ideas and resources:

Pinterest

TpT Store

Instagram

Blog

Facebook

Click here to join my email list...

(and get FREE STUFF!)

© Copyright 2015 by Christine Cadalzo/ Making Meaning.
All rights reserved. The reproduction of any part of this product is strictly prohibited.

\title{

Second Grade

Second Grade Common Core Standards

2.nbt.a.1: Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases:
2.nbt.a.1.a: 100 can be thought of as a bundle of ten tens- called a "hundred." 2.nbt.a.1.b: The numbers $100,200,300,400,500,600,700,800,900$ refer to one, two, (-) three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).
2.nbt.a.3: Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.
2.nbt.a.4: Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, $=$, and $<$ symbols to record the results of comparisons.

Game Directions

1. Players spin the spinner and decide if they want that number to be the hundreds, tens, or ones. They record it on their sheet.
2. Players spin two more times and record the remaining place values. No erasing- once you choose a place for a digit, it stays there!
3. Once a player has spun three times and has their hundreds, tens, and ones, he or she finds the total and writes it under "my number." The other player's number goes under "partner's number."
4. Players compare the two numbers and record the results with $<,=$, or $>$.
5. The winner of each round is the player with the bigger number.

Differentiation Ideas

To support students:
-have students use the first spinner, with the numbers 1-8 on it
-have students play with just tens and ones, no hundreds
-have students use base ten blocks or drawings to build their numbers -have students play without comparing the numbers, just building them To challenge students:
-have the students use the second spinner, with the numbers 1-10 on it -have students add or subtract the two numbers, instead of comparing -have students focus on using vocabulary- expanded form, compare, etc. -have students write out their numbers in written form
-have them play the third grade version
Higher Order Thinking Questions
-Why did you pick that place for that digit?
-Who do you think will win this round? Why?
-How do you decide where to put each number when you spin?
-How do you know which number is bigger?
-What digit are you hoping to spin? Why?
-What happens when you spin a 10? Why?
© Chris Cadalzo 2014

3.nbt.a.2: Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.
supports 3.nbt.a.1: Use place value understanding to round whole numbers to the nearest 10 or 100.

Game Directions

1. Players decide if they are going to play with addition or subtraction.
2. Players spin the spinner and decide if they want that number to be the hundreds, tens, or ones. They record it on their sheet.
3. Players spin two more times and record the remaining place values. No erasingonce you choose a place for a digit, it stays there!
4. Once a player has spun three times and has their hundreds, tens, and ones, he or she finds the total and writes it under "my number." The other player's number goes under "partner's number."
5. Players add or subtract the two numbers and record the sum or difference.
6. The players win the round if their sum is over 700 or their difference is less than 300.

Differentiation Ideas

To support students:

-have students use the first spinner, with the numbers 1-8 on it
-have students play with just tens and ones, no hundreds
-have students use base ten blocks or drawings to build their numbers
-have students play without adding the numbers, just building them
-have students play the second grade version
To challenge students:
-have the students use the second spinner, with the numbers 1-10 on it
-have students focus on using vocabulary- expanded form, compare, etc.
-have them play the fourth grade version
-change the numbers needed to win: higher sums and smaller differences are more difficult- or change it so that students need to find a large difference to win

Higher Order Thinking Questions

-Why did you pick that place for that digit?
-Do you use the same addition/ subtraction strategy every time? Why or Why not? -Do you think you will win this round? Why?
-How do you decide where to put each number when you spin?
-How can you and your partner work together to strategize?
-What digit are you hoping to spin? Why?
-What happens when you spin a 10? Why?
-How could you add/ subtract using the hundreds/ tens/ ones?

Fourth Grade
 Common Core Standards

4.nbt.a.2: Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using $>,=$, and < symbols to record the results of comparisons.
Supports 4.nbt.a.1: Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right.
Using the third grade version supports 4.nbt.b.4: Fluently add and subtract multi-digit whole numbers using the standard algorithm.

Game Directions

1. Players spin the spinner and decide if they want that number to be the hundred thousands, thousands, or hundreds. They record it on their sheet.
2. Players spin two more times and record the remaining place values. No erasingonce you choose a place for a digit, it stays there!
3. Once a player has spun three times and has recorded the expanded form, he or she finds the total and writes it under "my number." The other player's number goes under "partner's number."
4. Players each record the written form of their number.
5. Players compare the two numbers and record the results with $<,=$, or $>$.
6. The winner of each round is the player with the bigger number.

Differentiation Ideas

To support students:

-have students use the first spinner, with the numbers 1-8 on it
-have students play with different, simpler place values- use the second grade version for ones, tens, and hundreds
-have students play without comparing or writing the written form
-have the students play the third grade version to practice addition and subtraction and build up their number sense
To challenge students:
-have the students use the second spinner, with the numbers 1-10 on it -have students add or subtract the two numbers, instead of comparing -have students focus on using vocabulary- expanded form, compare, etc. -have the students use larger place values.
-have them play the fifth grade version

Higher Order Thinking Questions

-Why did you pick that place for that digit?
-Who do you think will win this round? Why?
-How do you decide where to put each number when you spin?
-How do you know which number is bigger?
-What digit are you hoping to spin? Why?
-What happens when you spin a 10? Why?

$0 \quad 0 \quad 0 \quad 0$

D 5.nbt.a.3: Read, write, and compare decimals to thousandths.
5.nbt.a.3.a: Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 100+4 \times 10+7 \times 1+3 \times$
$\square(1 / 10)+9 \times(1 / 100)+2 \times(1 / 1000)$.
5.nbt.a.3.b: Compare two decimals to thousandths based on meanings of the
digits in each place, using >, $=$, and < symbols to record the results of comparis
Supports 5.nbt.a.1: Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of
\square what it represents in the place to its left.

Game Directions

D 1. Players spin the spinner and decide if they want that number to be the ones, tenths, hundredths, or thousandths. They record it on their sheet.
2. Players spin three more times and record the remaining place values. No

- erasing-once you choose a place for a digit, it stays there!

3. Once a player has spun four times and has recorded the expanded form, he

- or she finds the total and writes it under "my number." The other player's number goes under "partner's number."

4. Players each record the written form of their number.

- 5. Players compare the two numbers and record the results with $<,=$, or $>$.

6. The winner of each round is the player with the bigger number.

Differentiation Ideas

To support students:
-have students use the first spinner, with the numbers 1-8 on it
[. -have students play with only the ones and tenths, and then add in the hundredths and thousandths
-have students use dollars and cents to build decimals through hundredths -have students play without comparing or writing the written form -have the students play the fourth grade version
To challenge students:
-have the students use the second spinner, with the numbers 1-10 on it -have students add or subtract the two numbers, instead of comparing
\square-have students focus on using vocabulary- expanded form, compare, etc. -have the students write about their strategies
-Why did you pick that place for that digit?
-Who do you think will win this round? Why?

- -How do you decide where to put each number when you spin? -How do you know which number is bigger?
D -What digit are you hoping to spin? Why?
-What happens when you spin a 10 ? Why?

Name:
Date:
(

Date:

Date:

\square \qquad tenths ___ hundredths
__thousandths $=$
二

-
ones
tenths
$+$ hundredths +
\qquad
\qquad

